The Crystal Structure of $\mathbf{H f}_{\mathbf{1 8}} \mathrm{O}_{\mathbf{1 0}}(\mathbf{O H})_{\mathbf{2 6}}\left(\mathrm{SO}_{4}\right)_{\mathbf{1 3}}\left(\mathbf{H}_{\mathbf{2}} \mathrm{O}\right)_{\mathbf{3 3}}$

By Wanda Mark and Margareta Hansson
Department of Inorganic Chemistry, Chalmers University of Technology and the University of Göteborg, P.O. Box, S-402 20 Göteborg 5, Sweden

(Received 25 September 1974; accepted 6 December 1974)

Abstract

$\mathrm{Hf}_{18} \mathrm{O}_{10}(\mathrm{OH})_{26}\left(\mathrm{SO}_{4}\right)_{13}\left(\mathrm{H}_{2} \mathrm{O}\right)_{33}$ crystallizes in space group $\mathrm{P6}_{3} / m$ (No. 176) with $a=b=34 \cdot 09$ (2), $c=$ 17.664 (7) $\AA, Z=6$. The positions of the Hf atoms were deduced by direct methods and the lighter atoms from successive Fourier calculations. The determination was based on 2240 observed Weissenberg intensities and refined to an R of 0.075 . Aggregates with the composition $\mathrm{Hf}_{18} \mathrm{O}_{10}(\mathrm{OH})_{26}\left(\mathrm{SO}_{4}\right)_{13}\left(\mathrm{H}_{2} \mathrm{O}\right)_{20}$ constitute the building units of the structure, which is held together in the z direction by sulphate groups and by hydrogen-bonded water molecules. The Hf atoms are coordinated to seven or eight O atoms in such a way that each Hf atom is linked to $2,3,4$ or 7 neighbouring Hf atoms by double oxygen bridges. The polyhedra formed by the coordinated O atoms are, for eight coordination, either dodecahedra or square antiprisms, and for seven-coordination, capped trigonal prisms.

Introduction

The determination of $\mathrm{Hf}_{18} \mathrm{O}_{10}(\mathrm{OH})_{26}\left(\mathrm{SO}_{4}\right)_{13}\left(\mathrm{H}_{2} \mathrm{O}\right)_{33}$ forms part of a systematic investigation of crystalline basic phases appearing in the two systems $\mathrm{Zr}(\mathrm{Hf}) \mathrm{O}_{2}-$ $\mathrm{SO}_{3}-\mathrm{H}_{2} \mathrm{O}$ (McWhan \& Lundgren, 1966; Hansson, 1969, 1973a, b; Hansson, Lundgren \& McWhan; to be published) and $\mathrm{Zr}(\mathrm{Hf}) \mathrm{O}_{2}-\mathrm{CrO}_{3}-\mathrm{H}_{2} \mathrm{O}$ (Mark, 1972, 1973; Hansson \& Mark, 1973).

The aim of the investigation is to establish the effects of variations in acidity and temperature on the polynuclear species formed by hydrothermal hydrolysis. The degree of polymerization and the coordination of atoms around the metal ions have been subjects of special interest as well as the differences in the chemical behaviour and the coordination distances.

Preparation and analyses

The products in the system $\mathrm{HfO}_{2}-\mathrm{SO}_{3}-\mathrm{H}_{2} \mathrm{O}$ were prepared by hydrothermal hydrolysis of a solution obtained in the following way. Pure $\mathrm{HfO}_{2}(99 \cdot 8 \%)$ was dissolved in boiling concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ and the solution was evaporated to dryness. The residues were dissolved in water or dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ with a molarity varying between $0 \cdot 1$ and 10 M . By keeping the solutions at different temperatures in the range $0-350^{\circ} \mathrm{C}$ during the hydrolysis, more than 100 samples were obtained, most of which were amorphous or unstable.

The preparation of the compound presented in this paper has been reported earlier (Hansson \& Lundgren, 1968). Samples showing identical Guinier powder photographs with this compound were synthesized by hydrolysis in water or in $0.1 M \mathrm{H}_{2} \mathrm{SO}_{4}$ in the temperature range $75-100^{\circ} \mathrm{C}$.
The proposed composition of the present compound, which can also be written $18 \mathrm{HfO}_{2} \cdot 13 \mathrm{SO}_{3} \cdot 46 \mathrm{H}_{2} \mathrm{O}$, is based on the thermogravimetric determination of the
SO_{3} and $\mathrm{H}_{2} \mathrm{O}$ contents as well as on the structure determination. As the crystals effloresce in air and some of the water molecules are loosely bound in the structure, the water analysis is not very accurate. The analyses were performed on a Mettler recording thermoanalyser, which yielded the following results (heating rate $6^{\circ} \mathrm{min}^{-1}$):

	$\% \mathrm{SO}_{3}$	$\% \mathrm{H}_{2} \mathrm{O}$
Found	$18 \cdot 5$	$14 \cdot 4$
Calculated for		
$18 \mathrm{HfO}_{2} .13 \mathrm{SO}_{3} .46 \mathrm{H}_{2} \mathrm{O}$	$18 \cdot 4$	$14 \cdot 7$

The removal of $\mathrm{H}_{2} \mathrm{O}$ took place in the temperature range $50-650^{\circ} \mathrm{C}$, while SO_{3} evaporated between 740 and $830^{\circ} \mathrm{C}$.

Crystal data

Weissenberg and precession photographs taken with $\mathrm{Cu} K \alpha$ radiation showed that the crystals had hexagonal symmetry, belonging to the Laue group 6/m. Since the only systematically absent reflexions are $00 l$ with $l=2 n+1$ the space group is either $P 6_{3}$ (No. 173) or $P 6_{3} / m$ (No. 176).

The cell dimensions determined from Guinier powder photographs (Hansson \& Lundgren, 1968), are: $a=b=34.09$ (2), $c=17.664$ (7) $\AA, V=1.775 \times 10^{4} \AA^{3}$.

The same authors determined the density by flotation which gave values between 3.07 and $3.30 \mathrm{~g} \mathrm{~cm}^{-3}$ with a mean of $3.19 \mathrm{~g} \mathrm{~cm}^{-3}$. This indicates six formula units of $18 \mathrm{HfO}_{2} .13 \mathrm{SO}_{3} .46 \mathrm{H}_{2} \mathrm{O}\left(\varrho_{c}=3.19 \mathrm{~g} \mathrm{~cm}^{-3}\right)$ in the cell, corresponding to 108 Hf atoms per cell. The lower and higher limits of the observed density would correspond to 104 and 112 Hf atoms per cell, respectively. The structure determination is consistent with 108 Hf atoms.

The crystal used for data collection was mounted in a sealed capillary along the c axis. Weissenberg photographs were taken for $h k 0-h k 9$ with $\mathrm{Cu} K \alpha$ ra-
diation, and 2240 independent reflexions were measured visually. The intensities were not corrected for absorption.

Structure determination and refinement

Owing to the large unit cell it was impossible to resolve the different $\mathrm{Hf}-\mathrm{Hf}$ vectors in a Patterson map. Efforts were made, therefore, to solve the structure by direct methods.

The data set used in the determination consisted of 2240 observed and 1259 unobserved reflexions within the limits $0<2 \theta<45^{\circ}$. The absolute scale was determined by a Wilson plot (Wilson, 1942) and normalized structure factors were calculated (Karle \& Karle, 1966). The $|E|$ statistics are given in Table 1. A centrosymmetric structure is indicated, although, since the data set consisted of independent reflexions only, there is a slight ambiguity. Since the space group $P 6_{3}$ is noncentrosymmetric $P 6_{3} / m$ was used in the subsequent calculations.

Table 1. Statistics for the normalized structure factors and the basic set in the structure determination

$\langle | E\left\rangle^{2}\right.$ was normalized to 1.00 and the 366 reflexions with $|E|>1.5$ were used in listing the phase-determining \sum_{2} relationship. The signs of 357 reflexions were determined with the Σ_{2} summation. A basic set of nine reflexions (Table 1) with their signs obtained by the symbolic addition procedure was used as a start.
E maps from Fourier summation of the $357 E$ values showed peaks, corresponding to all 108 Hf atoms, and satisfying the metal-metal distance criterion of $3 \cdot 4-3 \cdot 6 \AA$. The Hf parameters were refined to an R of $0 \cdot 177$, and the unit cell turned out to consist of six separate clusters each containing 18 Hf atoms. Subsequent Fourier calculations successively revealed the remaining light atoms. The atoms are situated either in the general position $12(i)$ or in $6(h)\left(x, y, \frac{1}{4}\right)$ of $P 6_{3} / m$.

Peaks corresponding to 216 O atoms coordinated to two, three or four different Hf atoms were obtained
from difference maps. These O atoms constitute double oxygen bridges which link the Hf atoms to form aggregates, each composed of 18 Hf and 36 O atoms. In Fig. 1 such a framework of the structure is shown in perspective. It can be seen that this part of the structure has an additional mirror plane perpendicular to $x y$ which would result in the symmetry of space group $P 6_{3} / \mathrm{mcm}$.
Moreover, the positions of 72 S atoms at appropriate distances from the Hf atoms could be deduced and also 288 O atoms coordinated to S , each aggregate of 18 Hf thus containing $12 \mathrm{SO}_{4}$ groups. An empirical formula $3 \mathrm{HfO}_{2} .2 \mathrm{SO}_{3} . x \mathrm{H}_{2} \mathrm{O}$ would be in accordance with these results. Some of the S-coordinated O atoms are also coordinated to Hf but in no case to two different Hf atoms. One peak in the Fourier maps with the same electron density as the O atoms could not, owing to too short distances to the neighbouring atoms $\mathrm{O}(18)$ and $\mathrm{O}(32)$, be explained as an O atom. When it was taken into account in the refinement as an S atom $[\mathrm{S}(9)$] with the occupation number $0 \cdot 5, R$ decreased markedly and the atomic parameters converged. The contribution of the statistically distributed $S(9)$ and its coordinated oxygens $O(62)$ and $O(63)$ gives the aggregate the more complicated composition
$18 \mathrm{HfO}_{2} .13 \mathrm{SO}_{3} . y \mathrm{H}_{2} \mathrm{O}$. Also, the SO_{4} groups have no mirror plane perpendicular to $x y$, and hence the symmetry of $P 6_{3} / m$ is correct for the total structure.

Additional O atoms (132) were located, which were coordinated to one Hf atom only, and were presumably O atoms of $\mathrm{H}_{2} \mathrm{O}$ molecules. The composition of the cluster could thus be written $18 \mathrm{HfO}_{2} .13 \mathrm{SO}_{3} .33 \mathrm{H}_{2} \mathrm{O}$ or, more consistent with the actual structure, $\mathrm{Hf}_{18} \mathrm{O}_{10}(\mathrm{OH})_{26}\left(\mathrm{SO}_{4}\right)_{13}\left(\mathrm{H}_{2} \mathrm{O}\right)_{20}$. This formulation assumes that O atoms coordinated to only one Hf are O atoms of $\mathrm{H}_{2} \mathrm{O}$ molecules, that those coordinated to two Hf are OH^{-}, while some of those coordinated to three Hf are OH^{-}and some are O^{2-} and those coordinated to four Hf are O^{2-}.
Finally, the $\mathrm{H}_{2} \mathrm{O}$ molecules of crystallization between the clusters could be found in the difference maps. Their O atoms are denoted $\mathrm{O}(101)-\mathrm{O}(108)$ and yield 13 waters of crystallization per aggregate. The total composition of one cluster is thus
$18 \mathrm{HfO}_{2} .13 \mathrm{SO}_{3} .46 \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{Hf}_{18} \mathrm{O}_{10}(\mathrm{OH})_{26}\left(\mathrm{SO}_{4}\right)_{13}\left(\mathrm{H}_{2} \mathrm{O}\right)_{33}$. Some of these atoms, i.e. $\mathrm{O}(103)$ and $\mathrm{O}(108)$, have high temperature factors, which might indicate an occupation number less than $1 \cdot 0$, and thus statistically distributed water molecules. Owing to the low accuracy of the data compared with the large number of light atoms, it was not considered profitable to try different occupation numbers in the refinement. Moreover, the $\mathrm{H}_{2} \mathrm{O}$ molecules between the clusters are probably loosely bound in the structure, since evaporation starts at a low temperature.

Refinement of the atomic parameters, including isotropic temperature factors, was performed with the least-squares block-diagonal approximation. The structure factors were weighted according to Hughes (1941)
which gave the weighting scheme shown in Table 2. The scattering factors were those given by Cromer \& Waber (1965) for Hf, by Doyle \& Turner (1968) for S and in International Tables for X-ray Crystallography for O . The Hf and S scattering factors were corrected for the real part of the anomalous dispersion according to Cromer (1965). The final R was 0.075 for the 2240 observed reflexions and $0 \cdot 161$ including the non-observed reflexions ($\sum 3349$). A difference synthesis gave a maximum residual electron density of $2 \cdot 2 \mathrm{e} \AA^{-3}$.

Table 2. Weight analysis after the final cycle of refinement
The quantities $w \Delta^{2}$ are normalized sums, $K_{\text {norm }} \cdot\left(\sum w \mid F_{o}-\right.$ $\left.\left|F_{c}\right|\right|^{2}$) and the number of reflexions within each F_{o} interval is 224.

F_{o} interval	$w \Delta^{2}$	F_{o} interval	$w \Delta^{2}$
$0-254$	0.71	$411-477$	1.14
$254-295$	1.22	$477-554$	0.91
$295-333$	0.87	$554-648$	1.06
$333-367$	0.66	$648-802$	1.05
$367-411$	0.69	$802-$	1.68

Table 3. Atomic coordinates and isotropic thermal parameters in \AA^{2} for $\mathrm{Hf}_{18} \mathrm{O}_{10}(\mathrm{OH})_{26}\left(\mathrm{SO}_{4}\right)_{13}\left(\mathrm{H}_{2} \mathrm{O}\right)_{33}$ $\mathbf{O}(101)-\mathbf{O}(108)$ are oxygen atoms of water molecules of crystallization. (Standard deviations are given in parentheses.)

	x	y	z	B
Hf(1)	$0 \cdot 08517$ (10)	$0 \cdot 40546$ (12)	$0 \cdot 35046$ (23)	1.69 (8)
Hf(2)	$0 \cdot 11547$ (10)	$0 \cdot 31801$ (12)	$0 \cdot 34904$ (23)	1.77 (8)
Hf(3)	$0 \cdot 18162$ (10)	$0 \cdot 26398$ (12)	$0 \cdot 35432$ (25)	1.94 (8)
Hf(4)	$0 \cdot 18144$ (15)	$0 \cdot 42117$ (17)	$\frac{1}{4}$	1.56 (11)
Hf(5)	$0 \cdot 07879$ (15)	$0 \cdot 21755$ (18)	4	1.88 (11)
Hf(6)	0.02433 (15)	$0 \cdot 30629$ (17)	$\frac{1}{4}$	1.68 (11)
Hf(7)	$0 \cdot 14315$ (11)	$0 \cdot 48318$ (12)	$0 \cdot 50835$ (24)	1.96 (8)
$\mathrm{Hf}(8)$	$0 \cdot 19246$ (11)	$0 \cdot 34126$ (12)	$0 \cdot 50845$ (25)	1.99 (8)
Hf(9)	$0 \cdot 00774$ (15)	$0 \cdot 42024$ (17)	4	1.71 (11)
Hf(10)	$0 \cdot 09025$ (11)	0.51315 (12)	0.35448 (25)	2.03 (8)
$\mathrm{Hf}(11)$	$0 \cdot 23089$ (11)	0.45797 (13)	$0 \cdot 55534$ (29)	2.09 (8)
S(1)	$0 \cdot 2845$ (6)	0.3408 (7)	$0 \cdot 4392$ (13)	$2 \cdot 8$ (5)
S(2)	-0.0223 (7)	$0 \cdot 4554$ (8)	$0 \cdot 4059$ (15)	$4 \cdot 2$ (6)
S(3)	$0 \cdot 0087$ (5)	$0 \cdot 2267$ (6)	$0 \cdot 3755$ (13)	1.8 (4)
S(4)	-0.0782 (9)	$0 \cdot 3090$ (11)	4	$3 \cdot 7$ (8)
S(5)	$0 \cdot 2132$ (12)	0.4489 (14)	$\frac{3}{4}$	$6 \cdot 4$ (11)
S(6)	$0 \cdot 2342$ (8)	0.5211 (9)	1	$2 \cdot 2$ (6)
S(7)	$0 \cdot 1943$ (7)	$0 \cdot 5925$ (8)	$0 \cdot 4373$ (16)	$4 \cdot 8$ (6)
S(8)	$0 \cdot 2702$ (11)	0.4246 (13)	$\frac{1}{4}$	$5 \cdot 3$ (9)
S(9)	0.0972 (11)	$0 \cdot 1569$ (13)	$0 \cdot 3900$ (24)	$2 \cdot 3$ (9)*
$\mathrm{O}(1)$	$0 \cdot 1484$ (17)	0.3498 (20)	$\frac{1}{4}$	1 (1)
$\mathrm{O}(2)$	$0 \cdot 0359$ (16)	0.3766 (18)	$\frac{1}{4}$	1 (1)
O (3)	$0 \cdot 1223$ (17)	0.4273 (20)	$\frac{1}{4}$	1 (1)
O(4)	$0 \cdot 1249$ (19)	0.5231 (22)	$\frac{1}{4}$	2 (2)
O(5)	0.0457 (22)	0.5011 (25)	$\frac{1}{4}$	4 (2)
O(6)	$0 \cdot 1777$ (27)	0.4606 (31)	$\frac{3}{4}$	6 (2)
O(7)	$0 \cdot 1487$ (17)	0.2169 (19)	$\frac{1}{4}$	1 (1)
$\mathrm{O}(8)$	0.0723 (17)	0.2791 (20)	$\frac{1}{4}$	1 (1)
O(9)	$0 \cdot 2090$ (20)	0.2969 (23)	$\frac{1}{4}$	3 (2)
$\mathrm{O}(10)$	-0.0554 (26)	0.3562 (30)	$\frac{1}{4}$	6 (2)
$\mathrm{O}(11)$	0.2793 (41)	0.3834 (48)	$\frac{1}{4}$	13 (4)
$\mathrm{O}(12)$	0.2833 (30)	0.5479 (35)	$\frac{1}{4}$	8 (3)
$\mathrm{O}(13)$	0.1902 (25)	0.3943 (30)	$\frac{3}{4}$	5 (2)
$\mathrm{O}(14)$	-0.0436 (23)	$0 \cdot 2917$ (27)	$\frac{1}{4}$	4 (2)
$\mathrm{O}(15)$	$0 \cdot 2163$ (28)	0.5538 (33)	$\frac{1}{4}$	7 (3)
O(16)	$0 \cdot 3129$ (39)	0.4688 (44)	$\frac{1}{4}$	11 (4)
O(17)	0.0543 (12)	$0 \cdot 2631$ (14)	$0 \cdot 4122$ (27)	1 (1)
$\mathrm{O}(18)$	$0 \cdot 1430$ (13)	$0 \cdot 1989$ (15)	$0 \cdot 4084$ (30)	2 (1)
O (19)	0.0640 (11)	0.3354 (13)	0.3375 (23)	1 (1)
$\mathrm{O}(20)$	0.0992 (12)	$0 \cdot 4130$ (14)	$0 \cdot 4671$ (28)	1 (1)
$\mathrm{O}(21)$	$0 \cdot 2904$ (13)	0.3134 (15)	0.4977 (28)	2 (1)
$\mathrm{O}(22)$	$0 \cdot 2013$ (16)	0.4798 (18)	0.4682 (35)	4 (1)
$\mathrm{O}(23)$	0.0940 (11)	$0 \cdot 5005$ (13)	$0 \cdot 4726$ (28)	1 (1)
O (24)	-0.0196 (14)	$0 \cdot 2002$ (16)	0.4328 (32)	3 (1)
O (25)	$0 \cdot 1855$ (11)	0.3327 (12)	0.3814 (25)	0 (1)
O (26)	$0 \cdot 2279$ (15)	$0 \cdot 3270$ (17)	$0 \cdot 6033$ (30)	3 (1)
O (27)	-0.0112 (11)	0.2481 (13)	0.3288 (25)	1 (1)
$\mathrm{O}(28)$	0.0495 (12)	$0 \cdot 4410$ (14)	$0 \cdot 3282$ (27)	1 (1)
$\mathrm{O}(29)$	0.0828 (15)	0.5756 (18)	0.3459 (32)	4 (1)
O(30)	$0 \cdot 1195$ (13)	0.2596 (15)	0.3314 (28)	2 (1)
O(31)	$0 \cdot 2173$ (17)	$0 \cdot 2270$ (19)	$0 \cdot 3486$ (35)	5 (2)
$\mathrm{O}(32)$	$0 \cdot 0654$ (17)	0.1600 (20)	$0 \cdot 3214$ (41)	5 (2)
O(33)	-0.0186 (17)	0.4253 (19)	$0 \cdot 4643$ (37)	5 (1)
O(34)	$0 \cdot 2574$ (13)	$0 \cdot 3132$ (15)	$0 \cdot 3776$ (30)	2 (1)

Table 3 (cont.)				
O(35)	$0 \cdot 1579$ (15)	0.5729 (17)	$0 \cdot 3748$ (36)	4 (1)
O(36)	0.0214 (14)	$0 \cdot 1997$ (16)	$0 \cdot 3254$ (32)	3 (1)
O(37)	$0 \cdot 1540$ (12)	$0 \cdot 4002$ (14)	$0 \cdot 3602$ (30)	2 (1)
$\mathrm{O}(38)$	$0 \cdot 2372$ (15)	$0 \cdot 4214$ (18)	$0 \cdot 3192$ (38)	4 (1)
$\mathrm{O}(39)$	$0 \cdot 1812$ (16)	$0 \cdot 6205$ (18)	0.4983 (34)	4 (1)
$\mathrm{O}(40)$	$0 \cdot 1292$ (12)	0.3311 (14)	$0 \cdot 4663$ (28)	1 (1)
$\mathrm{O}(41)$	$0 \cdot 1793$ (15)	$0 \cdot 2727$ (18)	$0 \cdot 4697$ (35)	4 (1)
$\mathrm{O}(42)$	$0 \cdot 2649$ (15)	$0 \cdot 3671$ (17)	0.4718 (34)	4 (1)
$\mathrm{O}(43)$	$0 \cdot 2228$ (15)	$0 \cdot 4126$ (17)	$0 \cdot 4632$ (33)	4 (1)
$\mathrm{O}(44)$	0.0133 (14)	$0 \cdot 3682$ (16)	$0 \cdot 4117$ (32)	3 (1)
$\mathrm{O}(45)$	0.0225 (16)	$0 \cdot 4992$ (18)	0.4056 (34)	4 (1)
$\mathrm{O}(46)$	$0 \cdot 1403$ (20)	$0 \cdot 2952$ (23)	0.5965 (40)	7 (2)
O(47)	$0 \cdot 2921$ (13)	$0 \cdot 4535$ (14)	0.5916 (28)	2 (1)
$\mathrm{O}(48)$	$0 \cdot 1695$ (15)	$0 \cdot 4539$ (18)	$0 \cdot 5922$ (34)	4 (1)
$\mathrm{O}(49)$	-0.0559 (19)	0.4683 (22)	$0 \cdot 4212$ (45)	7 (2)
O(50)	$0 \cdot 1373$ (12)	$0 \cdot 4835$ (14)	0.3877 (25)	1 (1)
$\mathrm{O}(51)$	0.2186 (13)	$0 \cdot 4897$ (15)	$0 \cdot 3206$ (33)	2 (1)
O(52)	-0.0341 (13)	$0 \cdot 4330$ (15)	0.3277 (30)	2 (1)
O(53)	$0 \cdot 2916$ (18)	$0 \cdot 4977$ (20)	$0 \cdot 4628$ (39)	6 (2)
O(54)	$0 \cdot 3285$ (16)	$0 \cdot 3751$ (19)	$0 \cdot 4059$ (34)	4 (1)
O(55)	$0 \cdot 1992$ (12)	$0 \cdot 3875$ (13)	$0 \cdot 5971$ (25)	1 (1)
O(56)	0.0939 (24)	$0 \cdot 4564$ (28)	$0 \cdot 6048$ (47)	9 (2)
O(57)	$0 \cdot 2677$ (15)	$0 \cdot 5302$ (17)	$0 \cdot 5941$ (32)	3 (1)
O(58)	$0 \cdot 2386$ (16)	$0 \cdot 6159$ (19)	0.3961 (33)	4 (1)
O(59)	-0.1007 (18)	$0 \cdot 2936$ (22)	$0 \cdot 1788$ (44)	6 (2)
O(60)	$0 \cdot 2349$ (14)	$0 \cdot 4639$ (15)	$0 \cdot 6688$ (29)	2 (1)
O(61)	$0 \cdot 1927$ (17)	0.5524 (20)	$0 \cdot 4813$ (38)	5 (1)
O(62)	0.0606 (40)	$0 \cdot 1529$ (44)	$0 \cdot 4749$ (88)	7 (4)*
O(63)	0.0919 (29)	$0 \cdot 1168$ (33)	$0 \cdot 3902$ (60)	3 (3)*
$\mathrm{O}(101)$	$0 \cdot 3471$ (24)	$0 \cdot 3685$ (27)	$\frac{1}{4}$	5 (2)
$\mathrm{O}(102)$	$0 \cdot 1607$ (23)	$0 \cdot 2761$ (27)	$\frac{3}{4}$	4 (2)
O(103)	0.0086 (38)	$0 \cdot 4647$ (44)	$\frac{3}{4}$	11 (4)
O(104)	0.0678 (16)	$0 \cdot 3338$ (19)	$0 \cdot 5562$ (34)	4 (1)
$\mathrm{O}(105)$	0.0610 (22)	$0 \cdot 2240$ (25)	$0 \cdot 5521$ (43)	8 (2)
$\mathrm{O}(106)$	-0.0033 (21)	$0 \cdot 4217$ (24)	$0 \cdot 6065$ (42)	7 (2)
O(107)	$0 \cdot 2983$ (24)	$0 \cdot 5961$ (29)	$0 \cdot 4779$ (52)	10 (2)
$\mathrm{O}(108)$	$0 \cdot 1091$ (32)	$0 \cdot 6374$ (37)	$0 \cdot 4850$ (66)	16 (4)

The highest peak obtained could not be explained as the O atom of a statistically distributed $\mathrm{H}_{2} \mathrm{O}$ molecule, owing to improbable $\mathrm{O}-\mathrm{O}$ distances.

The final atomic parameters are listed in Table 3.*
All calculations were performed on an IBM 360/65 computer with the program library of the Department of Inorganic Chemistry, Göteborg. $D A T A P 2$ (data reduction) was originally written by Coppens, Leiserowitz \& Rabinovich (1965), GAASA I-V ('direct methods') by Lindgren, Lindqvist \& Nyborg (1970) and $B L O C K$ by Lindgren, while DRF (Fourier) and DIS$T A N$ were written by Zalkin, Berkeley, California.

Description of the structure

The unit cell contains six aggregates of hydrolysed Hf and SO_{4} ions with the composition $\mathrm{Hf}_{18} \mathrm{O}_{10}(\mathrm{OH})_{26}\left(\mathrm{SO}_{4}\right)_{13}\left(\mathrm{H}_{2} \mathrm{O}\right)_{20}$. The Hf arrangement is most easily interpreted from Fig. 2 which shows the ar-

[^0]rangement of Hf and S only. A ring of ten $\mathrm{Hf}[2 \mathrm{Hf}(3)$, $2 \mathrm{Hf}(8), 2 \mathrm{Hf}(11), 2 \mathrm{Hf}(7), 2 \mathrm{Hf}(10)$]. joined by double oxide or hydroxide bridges, encircles the remaining eight Hf. The ring is folded along a line $\mathrm{Hf}(11)-\mathrm{Hf}(11)$ so that two planes are formed at an angle of $\sim 120^{\circ}$. The angles within this ten-ring are given in Table 4. In the middle of the ring, there are six $\mathrm{Hf}[2 \mathrm{Hf}(1)$, $2 \mathrm{Hf}(2), \mathrm{Hf}(4), \mathrm{Hf}(6)]$ arranged very nearly as an ideal octahedron. $\mathrm{Hf}(5)$ and $\mathrm{Hf}(9)$ are part of the Hf skeleton and form square pyramids with $2 \mathrm{Hf}(2), 2 \mathrm{Hf}(3)$ and $2 \mathrm{Hf}(1), 2 \mathrm{Hf}(10)$, respectively.

Table 4. Angles within the ten-membered Hf ring constituting part of each cluster

$\mathrm{Hf}(3)-\mathrm{Hf}(3)-\mathrm{Hf}(8)$	$137 \cdot 77(9)^{\circ}$
$\mathrm{Hf}(3)-\mathrm{Hf}(8)-\mathrm{Hf}(11)$	$144 \cdot 21(15)$
$\mathrm{Hf}(7)-\mathrm{Hf}(11)-\mathrm{Hf}(8)$	$108.88(12)$
$\mathrm{Hf}(7)-\mathrm{Hf}(10)-\mathrm{Hf}(10)$	$137.64(9)$
$\mathrm{Hf}(10)-\mathrm{Hf}(7)-\mathrm{Hf}(11)$	$144.95(15)$

Each Hf is connected to $2,3,4$ or 7 other Hf by double oxygen bridges, some of which are O^{2-} and some OH^{-}. In Fig. 1 an aggregate is shown, only those O atoms which bridge the Hf being outlined. The central part of this $\mathrm{Hf}-\mathrm{O}$ aggregate has a fluorite-like
type of structure, although the rows of close-packed O atoms are bent.

The coordination number of Hf is either 7 or 8. For $\operatorname{Hf}(1), \operatorname{Hf}(2), \operatorname{Hf}(3), \operatorname{Hf}(8)$ and $\operatorname{Hf}(10)$ the eightcoordinated O atoms are arranged dodecahedrally (Fig. 3) and for $\operatorname{Hf}(4), \operatorname{Hf}(5)$ and $\operatorname{Hf}(11)$ they form square antiprisms. The different sites and edges are labelled according to Hoard \& Silverton (1963) in Fig. 3. For the seven-coordinated $\operatorname{Hf}(6)$ and $\operatorname{Hf}(9)$ the coordination polyhedra are capped trigonal prisms. $\mathrm{Hf}(7)$ is also coordinated to seven O atoms, but, in this case these occupy seven corners of a square antiprism. One of its O atoms, $\mathrm{O}(56)$, has higher standard deviations than the remainder and, moreover, there is a peak in the difference map corresponding to the eighth corner of an antiprism. However, the parameters of an O atom in this position gave very high standard deviations in the refinement and this possibility was therefore discarded. There is, however, a possibility that the O coordination of $\operatorname{Hf}(7)$ is not always the same.

Most SO_{4} groups share two corners with two different Hf polyhedra $[\mathbf{S}(1), S(2), S(4), S(5), S(7), S(9)]$. In

Fig. 2 the $\mathrm{Hf}-\mathrm{S}$ lines indicate single oxide bridges, whereas the lines between the Hf atoms denote double oxygen bridges. The same is true for $\mathrm{S}(3)$, which shares three O atoms with three different Hf atoms $[\mathrm{Hf}(2)$, $\mathrm{Hf}(5), \mathrm{Hf}(6)]$. The SO_{4} groups corresponding to $\mathrm{S}(6)$ and $S(8)$ are, on the other hand, connected to $\mathrm{Hf}(4)$ by the sharing of an edge.

In Fig. 4, one cluster is outlined schematically, viewed along c, with the Hf coordination polyhedra denoted. Table 5 gives the Hf-O and S-O coordination distances and also the average $\mathrm{Hf}-\mathrm{Hf}$ distance. The $\mathrm{O}-\mathrm{O}$ distances within the different polyhedra are shown in Table 6.

Infinite rows of condensed clusters are formed in the c direction since the SO_{4} groups $[\mathrm{S}(5), \mathrm{O}(6), \mathrm{O}(13)$, $2 \times \mathrm{O}(60)$] are shared between two clusters. $\mathrm{H}_{2} \mathrm{O}$ molecules $[\mathrm{O}(101)-\mathrm{O}(108)]$ are situated between the clusters, giving the total empirical formula
$18 \mathrm{HfO}_{2} .13 \mathrm{SO}_{3} .46 \mathrm{H}_{2} \mathrm{O} . \mathrm{O}(101)$ and $\mathrm{O}(103)-\mathrm{O}(106)$ have typical hydrogen-bond distances to O atoms in one cluster and $\mathrm{O}(103)-\mathrm{O}(106)$ also have somewhat longer distances to O atoms in symmetry-related clus-

Fig. 1. Stereoscopic picture of the $\mathrm{Hf}-\mathrm{O}$ framework of a cluster in $\mathrm{Hf}_{18} \mathrm{O}_{10}(\mathrm{OH})_{26}\left(\mathrm{SO}_{4}\right)_{13}\left(\mathrm{H}_{2} \mathrm{O}\right)_{33}$.

Fig. 2. Stereoscopic view of the mutually connected Hf and S atoms in a cluster of $\mathrm{Hf}_{18} \mathrm{O}_{10}(\mathrm{OH})_{26}\left(\mathrm{SO}_{4}\right)_{13}\left(\mathrm{H}_{2} \mathrm{O}\right)_{33}$. Double oxygen bridges between the Hf atoms are replaced by straight lines.
ters. The $\mathrm{O}-\mathrm{O}$ distances for the water O atoms are listed in Table 7. It can be seen that the clusters are held together by weak hydrogen bonds from the $\mathrm{H}_{2} \mathrm{O}$ of crystallization and most firmly by $\mathrm{O}(106)$.

Discussion

Structures determined so far in the two systems $\mathrm{Zr}(\mathrm{Hf}) \mathrm{O}_{2}-\mathrm{SO}_{3}-\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Zr}(\mathrm{Hf}) \mathrm{O}_{2}-\mathrm{CrO}_{3}-\mathrm{H}_{2} \mathrm{O}$ are all very closely related. The building units in these structures are $\mathrm{Zr}(\mathrm{Hf})-\mathrm{O}$ chains linked by SO_{4} or CrO_{4} groups. In the structure of $\mathrm{Zr}(\mathrm{OH})_{2} \mathrm{CrO}_{4}$ (Mark, 1972), which is obtained at lower acidity than the other chromate compounds, the chains are condensed perpendicular to each other to form infinite nets. The structure of $\mathrm{Hf}_{18} \mathrm{O}_{10}(\mathrm{OH})_{26}\left(\mathrm{SO}_{4}\right)_{13}\left(\mathrm{H}_{2} \mathrm{O}\right)_{33}$ is therefore unique regarding the condensation of Hf atoms. It fits well with the theory that more highly polymerized species are formed at low acidities. Clearfield \& Vaughan (1956) have found tetranuclear species of $\mathrm{Zr}_{4}(\mathrm{OH})_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)_{16}^{8+}$ in $\mathrm{ZrOCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}$ and $\mathrm{ZrOBr}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}$. Studies of $\mathrm{Zr}^{\mathrm{IV}}$ and $\mathrm{Hf}^{\mathrm{IV}}$ in aqueous solutions were undertaken by Kraus \& Johnson (1953), Johnson \& Kraus (1956) and Clearfield (1964). The authors came to the conclusion that the degree of polymerization lies between three and four in HCl and HClO_{4} media of $0 \cdot 2-2 \cdot 0 \mathrm{M}$ and increases rapidly as the acid concentration decreases below 0.2 M . It would therefore be of interest to study the solution from which the investigated compound is synthesized in order to ascertain which kind of polynuclear species exists in solution.
Owing to the difficulty in obtaining low standard deviations of the O atomic positions, the main purpose of this work has been to establish unambiguously the configuration of this unusual complex rather than to obtain accurate interatomic distances. A brief discussion of the different distances will, however, be given with reference to a paper on eight-coordination by Hoard \& Silverton (1963).
By comparing pairs of isostructural compounds as for example $\mathrm{Zr}(\mathrm{OH})_{2} \mathrm{SO}_{4}, \mathrm{Hf}(\mathrm{OH})_{2} \mathrm{SO}_{4}$ (Hansson, 1973a, b) and $\mathrm{Zr}_{4}(\mathrm{OH})_{6}\left(\mathrm{CrO}_{4}\right)_{5} \mathrm{H}_{2} \mathrm{O}$ (Mark, 1973), $\mathrm{Hf}_{4}(\mathrm{OH})_{8}$ $\left(\mathrm{CrO}_{4}\right)_{4} \mathrm{H}_{2} \mathrm{O}$ (Hansson \& Mark, 1973) Hf has been seen to have slightly shorter coordination distances to O than has Zr . The mean $\mathrm{Hf}-\mathrm{O}$ distances in the dodecahedra of $\mathrm{Hf}_{18} \mathrm{O}_{10}(\mathrm{OH})_{26}\left(\mathrm{SO}_{4}\right)_{13}\left(\mathrm{H}_{2} \mathrm{O}\right)_{33}$ are, however, longer than the $\mathrm{Zr}-\mathrm{O}$ distances usually obtained in Zr compounds. This is obviously because of the strain implied on the actual configuration. If on the other hand the two different types of bonds, $\mathrm{Hf}-\mathrm{O}(A)$ and $\mathrm{Hf}-\mathrm{O}(B)$, are compared (Table 5) it can be seen that the mean $\mathrm{Hf}-\mathrm{O}(A)$ bonds are all longer than normal while the mean $\mathrm{Hf}-\mathrm{O}(B)$ bonds tend to be normal or even shorter than normal. In the two mutually perpendicular trapezoids which form the dodecahedron, the coordinated O atoms situated at the top of one trapezoid are denoted $\mathrm{O}(A)$ and those at the base $\mathrm{O}(B)$. The ratio Me$\mathrm{O}(A) / \mathrm{Me}-\mathrm{O}(B)$ is 1.03 for the most favourable model calculated for a dodecahedron by Hoard \& Silverton.

In the present structure, this value varies between 1.03 and 1.13 , indicating that strains enforced on the structure weigh most heavily on the $\mathrm{Hf}-\mathrm{O}(A)$ bonds.

Table 5. Oxygen coordination distances in \AA for hafnium and sulphur, and the average Hf-Hf distance
The standard deviations are given in parentheses.
Hf : eight-coordination (dodecahedra)

$\mathrm{Hf}-\mathrm{O}(A)$		$\mathrm{Hf}-\mathrm{O}(B)$	
$\mathrm{Hf}(1)-\mathrm{O}(2)$	$2 \cdot 30$ (3)	$\mathrm{Hf}(1)-\mathrm{O}(3)$	$2 \cdot 09$ (3)
-O(37)	2.38 (5)	-O(19)	$2 \cdot 14$ (4)
-O(44)	2.45 (4)	-O(20)	$2 \cdot 10$ (5)
-O(50)	2.44 (4)	-O(28)	$2 \cdot 14$ (4)
Av.	$2 \cdot 39$	Av.	2.12 Mean value 2.25
$\mathrm{Hf}(2)-\mathrm{O}(8)$	$2 \cdot 24$ (3)	$\mathrm{Hf}(2)-\mathrm{O}(1)$	2.07 (3)
-O(17)	2.28 (4)	-O(19)	$2 \cdot 12$ (3)
-O(25)	$2 \cdot 26$ (3)	-O(30)	2.09 (4)
-O(37)	$2 \cdot 44$ (4)	-O(40)	$2 \cdot 12$ (5)
Av.	$2 \cdot 30$	Av.	$2 \cdot 10$ Mean value $2 \cdot 20$
$\mathrm{Hf}(3)-\mathrm{O}(7)$	2.33 (4)	$\mathrm{Hf}(3)-\mathrm{O}(9)$	$2 \cdot 12$ (3)
-O(18)	$2 \cdot 15$ (5)	-O(30)	2.09 (4)
-O(25)	2.33 (4)	-O(31)	$2 \cdot 15$ (5)
-O(34)	2.31 (4)	-O(41)	2.07 (6)
Av.	$2 \cdot 28$	Av.	2.10 Mean value $2 \cdot 19$
$\mathrm{Hf}(8)-\mathrm{O}(25)$	2.26 (4)	$\mathrm{Hf}(8)-\mathrm{O}(40)$	$2 \cdot 14$ (4)
-O(26)	$2 \cdot 25$ (5)	-O(41)	$2 \cdot 25$ (5)
-O(43)	$2 \cdot 26$ (5)	-O(42)	$2 \cdot 26$ (5)
-O(46)	2.29 (7)	-O(55)	$2 \cdot 15$ (4)
Av.	2.27	Av.	2.20 Mean value 2.23
$\mathrm{Hf}(10)-\mathrm{O}(5)$	$2 \cdot 29$ (4)	$\mathrm{Hf}(10)-\mathrm{O}(4)$	$2 \cdot 12$ (3)
-O(35)	$2 \cdot 21$ (5)	-O(23)	$2 \cdot 15$ (5)
-O(45)	$2 \cdot 30$ (5)	-O(28)	$2 \cdot 19$ (4)
-O(50)	$2 \cdot 36$ (4)	-O(29)	$2 \cdot 27$ (5)
Av.	$2 \cdot 29$	Av.	2.18 Mean value $\mathbf{2} \cdot 24$

Hf: eight-coordination (antiprisms)

$\mathrm{Hf}(4)-\mathrm{O}(1)$	$2.11(6)$	$\mathrm{Hf}(5)-\mathrm{O}(7)$	$2.40(5)$
$-\mathrm{O}(3)$	$2.13(5)$	$-\mathrm{O}(8)$	$2.42(6)$
$-2 \times \mathrm{O}(37)$	$2.12(5)$	$-2 \times \mathrm{O}(30)$	$2.01(5)$
$-2 \times \mathrm{O}(38)$	$2.26(5)$	$-2 \times \mathrm{O}(32)$	$2.18(7)$
$-2 \times \mathrm{O}(51)$	$2.38(5)$	$-2 \times \mathrm{O}(36)$	$2.19(5)$
Av.	2.22	Av.	2.17
$\mathrm{Hf}(11)-\mathrm{O}(22)$	$2.17(6)$	$\mathrm{Hf}(11)-\mathrm{O}(53)$	$2.45(6)$
$-\mathrm{O}(43)$	$2.16(6)$	$-\mathrm{O}(55)$	$2.21(4)$
$-\mathrm{O}(47)$	$2.26(4)$	$-\mathrm{O}(57)$	$2.24(5)$
$-\mathrm{O}(48)$	$2.13(5)$	$-\mathrm{O}(60)$	$2.01(5)$
		Av.	2.20

Hf : seven-coordination (capped trigonal prisms)

$\mathrm{Hf}(6)-\mathrm{O}(2)$	$2.23(5)$	$\mathrm{Hf}(9)-\mathrm{O}(2)$	$2.14(5)$
$-\mathrm{O}(8)$	$2.25(5)^{*}$	$-\mathrm{O}(5)$	$2.39(7)^{*}$
$-\mathrm{O}(14)$	$2.11(7)$	$-\mathrm{O}(10)$	$2.17(8)$
$-2 \times \mathrm{O}(19)$	$1.96(4)$	$-2 \times \mathrm{O}(28)$	$1.85(4)$
$-2 \times \mathrm{O}(27)$	$2.22(4)$	$-2 \times \mathrm{O}(52)$	$2.18(5)$
Av.	2.14	Av.	2.11

Hf: seven coordination ('missing' antiprism)

$\mathrm{Hf}(7)-\mathrm{O}(20)$	$2 \cdot 22(4)$	$\mathrm{Hf}(7)-\mathrm{O}(50)$	$2 \cdot 14(5)$
$-\mathrm{O}(22)$	$2.16(5)$	$-\mathrm{O}(56)$	$2.24(8)$
$-\mathrm{O}(23)$	$2 \cdot 13(4)$	$-\mathrm{O}(61)$	$2 \cdot 16(6)$
$-\mathrm{O}(48)$	$2 \cdot 21(5)$	Av.	$2 \cdot 18$
	$\quad *$ capped.		

S:(tetrahedra)					
$\mathrm{S}(1)-\mathrm{O}(21)$	1.48 (5)	$\mathrm{S}(2)-\mathrm{O}(33)$	1.50 (7)	$\mathrm{S}(3)-\mathrm{O}(17)$	$1 \cdot 56$ (4)
-O(34)	$1 \cdot 43$ (5)	-O(45)	$1 \cdot 51$ (6)	-O(24)	$1 \cdot 38$ (6)
-O(42)	$1 \cdot 48$ (6)	-O(49)	1.44 (6)	-O(27)	1.47 (4)
-O(54)	$1 \cdot 49$ (6)	-O(52)	1.53 (6)	-O(36)	1.49 (5)
Av.	1.47	Av.	1.50	Av.	1.48
$\mathrm{S}(4)-\mathrm{O}(10)$	1.39 (10)	$\mathrm{S}(5)-\mathrm{O}(6)$	1.45 (9)	$\mathrm{S}(6)-\mathrm{O}(12)$	$1 \cdot 45$ (9)
-O(14)	1.56 (8)	-O(13)	1.62 (10)	-O(15)	1.51 (10)
$-2 \times 0(59)$	$1 \cdot 43$ (7)	$-2 \times \mathrm{O}(60)$	1.58 (5)	$-2 \times \mathrm{O}(41)$	1.55 (6)
Av.	$1 \cdot 45$	Av.	1.56	Av.	1.52
$\mathrm{S}(7)-\mathrm{O}(35)$	$1 \cdot 54$ (6)	$\mathrm{S}(8) \mathrm{O}(11)$	1.58 (14)	$\mathrm{S}(9)-\mathrm{O}(18)$	1.54 (6)
-O(39)	1.64 (6)	-O(16)	1.48 (13)	-O(32)	1.67 (8)
-O(58)	1.50 (6)	$-2 \times \mathrm{O}(38)$	1.63 (6)	-O(62)	1.91 (15)
-O(61)	1.55 (7)	Av.	1.58	-O(63)	1.29 (11)
Av.	$1 \cdot 56$			Av.	$1 \cdot 60$

Table 5 (cont.)

The dodecahedral edges, a, m, b and g (Fig. 3 and Table 6) should according to the ideal symmetry, have the relative lengths $a=m<b<g$. In this particular case, a is always longer than m and b. This is the consequence of the long $\mathrm{Hf}-\mathrm{O}(A)$ bonds, as the d orbitals are strongly directed.

The average $\mathrm{Hf}-\mathrm{O}$ distances and lengths of the edges in the square antiprisms are about those which are to be expected (Tables 5 and 6).

The most favourable polyhedra formed by sevencoordinated atoms are the pentagonal bipyramid and

Fig. 3. Idealized dodecahedron with symbols according to Hoard \& Silverton.

Table 6. The mean values of oxygen-oxygen distances (in \AA) within the different polyhedra
(The nomenclature is according to Hoard \& Silverton.)
Dodecahedra

Oxygens	O-O edge			
coordinated to	a	m	g	b
Hf(1)	3.07	$2 \cdot 71$	$2 \cdot 57$	$3 \cdot 26$
Hf(2)	2.97	$2 \cdot 61$	$2 \cdot 69$	$3 \cdot 16$
Hf(3)	2.85	$2 \cdot 51$	2.72	3.07
Hf(8)	2.69	$2 \cdot 60$	$2 \cdot 65$	3.33
Hf(10)	$2 \cdot 81$	$2 \cdot 64$	$2 \cdot 68$	$3 \cdot 20$
Antiprisms O-O edge				
Oxygens	兂			
coordinated	Trigonal faces		Square faces	l/s
Hf(4)	2.91		$2 \cdot 58$	$1 \cdot 13$
Hf(5)	$2 \cdot 85$		2.53	$1 \cdot 13$
Hf(11)	$2 \cdot 81$		$2 \cdot 63$	1.07

the capped trigonal prism. The pentagonal bipyramid is the polyhedron adopted in all compounds investigated by the authors, although the capped trigonal prism has been suggested by Herak, Malčič \& Manojlovič (1965) for $\mathrm{Na}_{5} \mathrm{Zr}_{2} \mathrm{~F}_{13}$. In
$\mathrm{Hf}_{18} \mathrm{O}_{10}(\mathrm{OH})_{26}\left(\mathrm{SO}_{4}\right)_{13}\left(\mathrm{H}_{2} \mathrm{O}\right)_{33} \mathrm{Hf}(6)$ and $\mathrm{Hf}(9)$ are sevencoordinated by O atoms forming quite regular capped trigonal prisms. Seven-coordination has been dealt

Table 7. Distances in \AA from oxygen atoms of water molecules of crystallization to nearest neighbouring oxygen atoms in different clusters
Standard deviations are given in parentheses. The symmetry-related clusters are denoted: $\mathbf{C l}(x, y, z), \mathbf{C} 2(\bar{x}, \bar{y}, \bar{z}), \mathbf{C} 3\left(x-y, x, \frac{1}{2}+z\right)$ and $\mathrm{C} 4(y-x, \bar{x}, z)$, where C 1 corresponds to the parameters given in Table 3.

$\mathrm{O}(101)-\mathrm{O}(11)$	$(\mathrm{C} 1)$	$2.60(15)$
$-2 \times \mathrm{O}(54)$	(C1)	$2.86(6)$
$\mathrm{O}(102)-2 \times \mathrm{O}(46)$	(C1)	$2.95(8)$
$\mathrm{O}(103)-\mathrm{O}(5)$	(C2)	$2.63(14)$
$-2 \times \mathrm{O}(106)$	(C1)	$2.85(10)$
$\mathrm{O}(104)-\mathrm{O}(40)$	(C1)	$2.67(7)$
$-\mathrm{O}(20)$	(C1)	$2.83(7)$
$-\mathrm{O}(21)$	(C3)	$2.84(7)$

$\mathrm{O}(105)-\mathrm{O}(46)$	(Cl)	$2.69(9)$
$-\mathrm{O}(62)$	$(\mathrm{C} 1)$	$2.78(16)$
$-\mathrm{O}(17)$	$(\mathrm{C} 1)$	$2.87(9)$
$-\mathrm{O}(31)$	$(\mathrm{C} 3)$	$2.89(9)$
$\mathrm{O}(106)-\mathrm{O}(33)$	(C1)	$2.58(10)$
$-\mathrm{O}(54)$	(C3)	$2.76(9)$
$-\mathrm{O}(103)$	$(\mathrm{C} 1)$	$2.85(10)$
$-\mathrm{O}(29)$	$(\mathrm{C} 2)$	$2.88(8)$
$\mathrm{O}(107)-\mathrm{O}(57)$	(C1)	$2.83(10)$
$-\mathrm{O}(58)$	(C1)	$2.84(10)$
$\mathrm{O}(108)-\mathrm{O}(39)$	(C1)	$2.80(11)$
$-\mathrm{O}(47)$	(C4)	$2.87(12)$
$-\mathrm{O}(33)$	(C2)	$2.88(11)$

with extensively in a review of high coordination numbers by Muetterties \& Wright (1967). The interconversions between the different proposed polyhedra are easily established, however, since the energy differences between them are relatively small. Thus, the seven O atoms surrounding $\mathrm{Hf}(7)$ could also be regarded as the corners of a tetragonal base-trigonal base polyhedron, which is found in monoclinic ZrO_{2} (McCullough \& Trueblood, 1959; Smith \& Newkirk, 1965) and HfO_{2} (Adam \& Rogers, 1959). The uncertainty concerning the coordination of $\mathrm{Hf}(7)$ is emphasized by the average Hf-O distance of $2.18 \AA$, which lies between the values obtained for seven- and eightcoordination.

Some of the SO_{4} groups have longer average S-O distances than normal (Table 5). When studying these, one has to bear in mind that at least two of the Scoordinated O atoms are also coordinated to different Hf atoms. The two S-O distances of 1.91 and 1.29 in the SO_{4} group $\mathrm{S}(9)$ must be considered to be less reliable since $O(62)$ and $O(63)$ have an occupation number of 0.5 .

We thank Professor G. Lundgren for his interest in this work. Financial support has been provided by the Swedish Natural Science Research Council (NFR, Contract No. 2318).

References

Adam, J. \& Rogers, M. D. (1959). Acta Cryst. 12, 951.
Clearfield, A. (1964). Rev. Pure Appl. Chem. 14, 91-108.
Clearfield, A. \& Vaughan, P. A. (1956). Acta Cryst. 9, 555-558.
Coppens, P., Leiserowitz, L. \& Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.
Cromer, D. T. (1965). Acta Cryst. 18, 17-23.
Cromer, D. T. \& WABER, J. T. (1965). Acta Cryst. 18, 104 109.

Doyle, P. A. \& Turner, P. S. (1968). Acta Cryst. A24, 390-399.
Hansson, M. (1969). Acta Chem. Scand. 23, 3541-3554.
Hansson, M. (1973a). Acta Chem. Scand. 27, 2455-2462.
HAnsson, M. (1973b). Acta Chem. Scand. 27, 2614-2622.
Hansson, M. \& Lundgren, G. (1968). Acta Chem. Scand. 22, 1683-1684.
Hansson, M. \& Mark, W. (1973). Acta Chem. Scand. 27, 3467-3476.

Fig. 4. Schematic outline of a building unit
$\mathrm{Hf}_{18} \mathrm{O}_{10}(\mathrm{OH})_{26}\left(\mathrm{SO}_{4}\right)_{13}\left(\mathrm{H}_{2} \mathrm{O}\right)_{20}$ viewed along the c axis. The different coordination polyhedra established for hafnium are depicted by D (dodecahedron), A (antiprism) and C (capped trigonal prism). The z coordinates of the atoms are given in the Figure unless $z=0.25$.

Herak, R. M., Malčič, S. S. \& Manojlovič, L. M. (1965). Acta Cryst. 18, 520-522.
Hoard, J. L. \& Silverton, J. V. (1963). Inorg. Chem. 2, 235-243.
Hughes, E. W. (1941). J. Amer. Chem. Soc. 63, 1737-1752.
Johnson, J. S. \& Kraus, K. A. (1956). J. Amer. Soc. 78, 3937-3943.
Karle, J. \& Karle, I. L. (1966). Acta Cryst. 21, 849-859.
Kraus, K. A. \& Johnson, J. S. (1953). J. Amer. Chem. Soc. 75, 5769.
Lindgren, O., Lindqvist, O. \& Nyborg, J. (1970). Acta Chem. Scand. 24, 732-733.
McCullough, J. D. \& Trueblood, K. N. (1959). Acta Cryst. 12, 507-511.
McWhan, D. B. \& Lundgren, G. (1966). Inorg. Chem. 5, 284.

Mark, W. (1972). Acta Chem. Scand. 26, 3744-3756.
Mark, W. (1973). Acta Chem. Scand. 27, 177-190.
Muetterties, E. L. \& Wright, C. M. (1967). Quart. Rev. 21, 109-194.
Smith, D. K. \& Newkirk, H. W. (1965). Acta Cryst. 18, 983-991.
Wilson, A. C. J. (1942). Nature, Lond. 150, 151-152.

[^0]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30809 (11 pp., 1 microfiche). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CHI 1 NZ, England.

